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Qubit

Node

Bi-partite entangled state

• qubits (two-level quantum systems)
• Multiple qubits and classical resources at each node (vertex)
• links (edges): bi-partite entangled (pure/mixed) two-qubit states.
• Quantum operations local: within nodes. Classical can be global.

Local Operations and Classical Communication LOCC
• Goal: entangle pairs of qubits between distant nodes



• Quantum Information: Entanglement is a resource for
tasks:teleportation, key distribution, fault tolerant computation

• Creating entanglement requires local interaction. Noise
increases with distance. Depolarization. Absorption. Can’t
distribute entanglement over long distance in a single stage!

• Long range entanglement via Network of stations or nodes that
store and purify a state.

• Generalization of quantum repeater schemes. Dür, Briegel, Cirac,

Zoller, PRA 1999

• Nodes share partially entangled states of qubits
• Nodes(stations)/channels, Vertices/edges, Sites/bonds
• Quantum operations probabilistic
• Large number of random components⇒ Complex

Networks, Percolation, Phase transition



Entanglement distribution on networks

• Given a network with a specified amount of quantum
and classical resources, and a specific long range
entanglement task, design the optimal protocol to
achieve the task.

• E.g. Optimal: Smallest amount of resources
(entanglement) per link that achieves task. Or protocol
that achieves task with highest probability for a given
amount of resources.

• E.g. Topology of lattice(network) may be an external
constraint.

• E.g. Task: entangle fixed widely separated nodes A
and B.



Entanglement: Two entangled qubits

Two entangled qubits: four-dimensional Hilbert space.

Cannot be written as a product state (in any basis).

Schmidt basis always exists for bi-partite pure state.

|α〉 =
√
α0 |00〉+

√
α1 |11〉

α0 > α1 α0 + α1 = 1 α1 ∈ [0, 1/2]

Pure, partially entangled, bipartite state

α1 = 0: no entanglement, α1 = 1/2: max. entanglement



Bell State: Singlet Conversion

Partially Entangled: |α〉 =
√
α0 |00〉+

√
α1 |11〉

Local operations (and classical communication): qubits not
allowed to interact

Maximally Entangled: |Ψ〉 =
1√
2
|00〉+

1√
2
|11〉

Singlet, Bell State, Maximally Entangled State

Singlet
Conversion Probability p = 2α1 for α0 > α1

Otherwise: product state (failure)
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Distributing Entanglement

|α〉|α〉

Can we entangle the two outermost qubits? Using only
local operations and classical communication.

Get Bell
state with same probability as in singlet conversion p = 2α1

! (product state otherwise) Note: if α1 = 1/2, then p = 1.
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Distributing Entanglement
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|Ψ〉

Yes. Entanglement Swapping.

Get Bell state with same
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Distributing Entanglement

|Ψ〉

Yes. Entanglement Swapping. Get Bell state with same
probability as in singlet conversion p = 2α1 ! (product
state otherwise) Note: if α1 = 1/2, then p = 1. Using only
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Quantum Network

Concrete: Square lattice. Each bond is an entangled pair
with amount of entanglement α1.
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Quantum Network

How to treat a network larger than two pairs. Naive method:
Borrow ideas from one-dimensional quantum repeaters.

1 Attempt to put each pair in a Bell state. Here: Singlet
conversion with probability of success p = 2α1.

2 Entanglement swappings between pairs of these Bell
states. Result: New Bell state between outermost
qubits, one from each of the pairs.

3 Repeat swappings, entangling ever more distant
qubits.



Classical Entanglement Percolation

A

B



Classical Entanglement Percolation
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Classical Entanglement Percolation
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Classical Entanglement Percolation
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Classical Entanglement Percolation

A
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Classical Entanglement Percolation

A

B

Done!



Big Network: α1 = 0.175 p = 0.35
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Can we do better than simply swapping along a chain ?

Yes. Precondition the lattice with other quantum
operations. Change local structure⇒ Different lattice⇒
Different percolation threshold. Then swap along chain.
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Kagome lattice

swap first
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Kagome lattice to Square lattice

pc ≈ 0.52 Kagome pc = 0.5 Square lattice

Acı́n, Cirac, Lewenstein, Nature Phys 2007
Perseguers, Cirac, Acı́n, Lewenstein, Wehr, PRA 2008 Lapeyre, Wehr, Lewenstein, PRA 2009



Kagome lattice to Square lattice

pc ≈ 0.52 Kagome pc = 0.5 Square lattice

Acı́n, Cirac, Lewenstein, Nature Phys 2007
Perseguers, Cirac, Acı́n, Lewenstein, Wehr, PRA 2008 Lapeyre, Wehr, Lewenstein, PRA 2009



More entanglement percolation with pure states:
• Multipartite (GHZ) initial states⇒ percolation on

Archimedean and non-planar graphs. Perseguers, Cavalcanti,

Lapeyre, Lewenstein, and Acı́n

• Improved swapping. Project onto larger subspace
• Conditionally complete swapping.
• Mixed states of rank ≤ 3 Broadfoot, Dorner, Jaksch, PRA 2010, EPL 2009

• Q-star transformation applied to various complex
networks. E.g. for scale-free network, q-star usually
advantageous when applied where degree is near

mean degree. Cuquet, Calsamiglia, PRL 2009, PRA

2011

Let’s leave these and move to full-rank mixed states and
complex networks.



Mixed states: Entanglement Purification

ρ

ρ′

Obtain σ with entanglement greater than ρ, ρ′ using LOCC
(local operations and classical communication)
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ρ
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σ

Obtain σ with entanglement greater than ρ, ρ′ using LOCC
(local operations and classical communication)



Two-qubit Mixed States

• Full-rank mixed state. All four eigenvalues positive.
• Cannot purify finite number of states to Bell pair
• Two-qubit Werner state parameterized by x

ρW(x) = x |Φ00〉〈Φ00| +
1− x

4
14, 0 ≤ x ≤ 1

• Werner state is a full-rank state (for x < 1).
• Separable for x ≤ 1/3.
• Concurrence: C(x) = max{0, (3x− 1)/2}. Linear,
C(separable) = 0, C(Bell pair) = 1

• Convert any state to ρW(x) via twirling. Can be done in lab.
ρW(x) invariant under twirl.



Purify Werner states. Get another Werner state.

x

x′

y(x, x′)

y(x, x′) =
x+ x′ + 4xx′

3 + 3xx′
, with probability

1 + xx′

2

Bennett,Brassard,Popescu,Schumacher, PRL 1996 Dür, Briegel, Rep. Prog. Phys. 2007



Swap Werner states. Get another Werner state.

x x′

xx′

Entanglement increases with x; Exponential decay of
entanglement with length of chain. Swapping: lose
entanglement, Purification: gain entanglement.



More generic network. Combine swapping and purification.

A B
S1

A1

A1

A1S1 S1

(c)

Shortest path Sub-path

Alternate path

A B
(b)

PABS
A

PAB

A B
(a)

PAB

Swap first, or purify first?



Mixed states on complex network

Werner state on each link. What is average concurrence?
(over quantum outcomes)

BA xk1
xk2

px(n1,m1) px(n2,m2)

(a) (c)

BA
n1

m1

n2

m2

k1

k2 BA

xk1+k2px(n1,m1)px(n2,m2)

(b)
(d)

A B
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Multiple purifications along shortest path. y = x1/L, α is fraction of
shortest path covered by sub-paths. Lines bound range of y for which
purify-swap is good.
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Advantage of purify-swap depends on shortest path length L, sub-path
length n, alternate path length m, Werner parameter x. Optimizing
formula for gain in average concurrence is messy.



Poisson Random Graph
• Graph with N vertices. Zero or one edge between each pair.

Each of the N(N − 1)/2 edges is present with probability p.

• Density of shortest paths of length L, σL

σ1 =p,

σ2 =(1− p)[1− (1− p2)N−2] ≈ (1− p)
(

1− e−p2N
)
,

σ3 ≈
(

1− e−p3(1−p)5(N−2)(N−3)
)

(1− p2)N−2(1− p), large p

≈
(

1− e−p3(1−p)5N2
)
e−p2N(1− p)

σL =pL
(N − 2)!

(N − L− 1)!
+O(pL+1), small p

σL ≈
1

N
for pN = 1, L < radius

Solomonoff, Rapoport, Bull. Math. Biophys. 1948 (Who has these ?), 1951 Erdös Rényi 1959,1960,1961
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Monte Carlo N = 200, L < 8



Poisson Random Graph at critical point pN = 1
Choose random pair of vertices. Entangle pair via purify-swap, or direct
swap. What is average gain in final entanglement ?
• Giant cluster of mass N2/3

• Density of shortest paths independent of L. So, as Werner
param. x→ 1 long paths dominate.

• “Good” ranges of x overlap more for large L: ⇒ integrate
• Each path-subpath occurs with probability ≈ 1/N2

• At fixed x, contributions are from L ≈ 1/(1− x). Four factors
• ≈ L paths contribute near x
• ≈ L sub-path lengths per path
• ≈ L alternate paths per sub-path
• ≈ L positions along path for sub,alt-path pair.

• Advantage of purify-swap over swap, averaged over network is

∆C ∼ K

N2(1− x)4
for large N small 1− x, (K≈6.5×10−5)

Lapeyre, Perseguers, Lewenstein, Acı́n, QIC 2012
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Noisy operations: y = ymax, a = amax(ymax), gives
∆C = 1/36. η: reliability of measurement. p2: reliability of
two-qubit operator.



Poisson Random Graph at critical point pN = 1

But wait,. . . there’s more. Return to perfect operations.
• For Np = 1, Radius grows like N 1/3

Nachmias, Peres, Ann. Prob.

2008

• Our MC shows radius of largest cluster ≈ 3N 1/3.
• Since L ≈ 1/(1− x) ⇒ ∆C < 81AN−2/3

• Purification protocols always give modest results.
They must be used iteratively.

• But, Choose bond density to favor L = 2, 3: p2N = c.
Then σ2 → (1− e−c) and σ3 → e−c. Now for Werner
parameter around 0.7, we have many subgraphs for
purify-swap.
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Distribution of shortest paths on Watts-Strogatz model for p = 0. One
link to each neighbor at ±1,±2.

• N(N − 1)/2 shortest paths (SPs)

• Number of SPs of each length L from 1 through N/4− 1 is 2N
(and 3N/2 for boundary case L = N/4.)

• Density of SPs of length L is then σL = 4/(N − 1). Flat.(except
for boundary case.)

Number of shortest paths admitting SPP (single purify-swap)

N2 −N
2

− 4N − 1

2
2N(5) =

N(N − 19)

2
.
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